General Biostatistics Part 4 **Methods for Statistical Inference Hypothesis Testing** Marie Diener-West, Ph.D. Department of Biostatistics Johns Hopkins University Bloomberg School of Public Health **Outline** · Rationale for hypothesis testing · Steps in hypothesis testing · Possible errors associated with hypothesis testing • p-value Test statistic Examples

Rationale for Hypothesis Testing

- Aids the clinician or researcher in reaching a decision concerning a population by examining a sample
- If a hypothesis regarding the true (but unknown) population parameter is true, is the value of the sample statistic likely or unlikely?
- Researcher may reject or not reject the hypothesis on the basis of the data

4

Steps in Hypothesis Testing

- 1 Select the probability model for the observed data.
- 2 Set up a *null* hypothesis (H_o) and *alternative* hypothesis (H_a)
 - two-sided test
 - one-sided test
- 3 Select a test statistic, Z or t

-

Steps in Hypothesis Testing

- 4 Select a decision rule and critical region (rejection region); choose the significance level α
- 5 The critical region consists of test statistics having very low probability
- 6 Compute the observed value of the test statistic
- 7 Make a statistical decision and conclusion

Sampling Distribution

Ho:
$$\mu = \mu_0$$

$$\frac{\alpha}{2}$$

$$\frac{\alpha}{2}$$

Critical Region

(using Z table)

 $\alpha = 0.05$

Statistical Decision

- "Reject" H_o because the value of the test statistic is very unlikely when H_o is true (values in the critical or rejection region)
- "Accept" ("Fail to reject") H_o because the value of the test statistic is likely when H_o is true (values in the "acceptance" region)

Results of Hypothesis Testing

10

Outcomes of Hypothesis Testing

	Conclusion Based on the Data (Sample)		
	Do not reject H₀	Reject H₀	
Truth: H _o is	Correct conclusion	Type I error	
Truth: H _o is false	Type II error	Correct conclusion	

11

Possible Errors in Testing

- Type I error = reject a true Ho
- α = the probability of a Type I error
- Type II error = not reject a false Ho
- β = the probability of a Type II error
- Power = 1 β = the probability of correctly rejecting Ho

Possible Errors in Testing

- Type I error
- Type II error
- Power of a statistical test
- Aim to keep Type I error small
- Aim to keep Type II error small and power high

13

p-value

- The p-value for a hypothesis test = the probability of obtaining the value of the test statistic that you obtained (or one more extreme) just by chance alone when Ho is true
- · May be one-sided or two-sided

14

Interpreting a p-value

- p < 0.05 "statistically significant"
- p > 0.05 NS "not statistically significant"
- · Statistical vs. Practical Significance

Test Statistic

In general

 $test\ statistic = \frac{(sample\ statistic\ -\ hypothesized\ value)}{}$ standard error of the sample statistic

- · Need to know
 - calculated sample statistic
 - hypothesized value of population parameter
 - standard error

Test Statistic for a Mean

- Ho: $\mu = \mu_0$
- When σ is known, use $z = \frac{(\overline{X} u_0)}{\frac{\sigma}{\sqrt{n}}}$
- When σ is not known, use t $t = \frac{(\overline{X} u_0)}{\frac{s}{\sqrt{n}}}$

Test Statistic for a **Proportion**

- Ho: $p = p_0$
- Use z

$$z = \frac{(\hat{p} - p_0)}{\sqrt{\frac{p_0 q_0}{p_0}}}$$

Example: Birth Weights

- Suppose we have taken a sample of 25 infants whose mean birth weight is 2500 gm.
- Suppose we know that full-term infants have a birth weight of 3000 gm.
- Can we conclude that we have sampled from a population of full-term infants?

19

Example: Birth Weights

- Ho: $\mu = 3000$
- We know n=25, \bar{x} = 2500 g
- Suppose σ = 1000 gm
- Test statistic

$$z = \frac{(\overline{X} - u_0)}{\frac{\sigma}{\sqrt{n}}} = \frac{(2500 - 3000)}{\frac{1000}{\sqrt{25}}} = -2.5$$

20

Example: Birth Weights

- Z=-2.5 is in the rejection region.
- Conclusion: Reject Ho that this sample is drawn from a population with a mean equal to 3000 g
- p -value = P(z < -2.5) + P(z>2.5) = 0.012

Example: Birth Weights

- p -value = 0.010
- Only 10 out of 1000 times would we observe a sample mean of 2500 gm if the true population mean is 3000 gm
- (using Z table) c = 0.05 $0.025 = \frac{\alpha}{2}$

· Conclusion?

Example: Birth Weights

- Ho: $\mu = 3000$
- Suppose s= 900g
- · Test statistic:
- When n is large, $t \Rightarrow z$

$$t = \frac{(\overline{X} - u_0)}{\frac{s}{\sqrt{n}}} = \frac{(2500 - 3000)}{\frac{900}{\sqrt{25}}} = -2.78$$

Example: Birth Weights

- p -value = 0.010
- Only 10 out of 1000 times would we observe a sample mean of 2500 g if the true population mean
 - $0.025 = \frac{G}{2}$ is 3000 g

(eldat f gaise)

· Conclusion?

c = 0.05

Example: Birth Weights

- · Conclusions:
 - Based on our data, it is unlikely that we sampled from a population of infants with mean birth weight of 3000 gm
 - Based on our data, it appears that we sampled from a population of infants with mean birth weight
 3000 gm
 - Our conclusion agrees with the interpretation of the 95% CI

25

Estimation vs. Hypothesis Testing

- The p-value is only a guideline
- Confidence interval may be more informative
- Statistical versus clinical (practical) significance
 - Related to sample size

2

Summary

- Hypothesis testing
 - State null hypothesis (Ho) and alternative hypothesis (Ha)
 - Use the theoretical sampling distribution to determine whether your observed sample statistic is "likely" or "unlikely" if Ho is true
 - Set critical region; calculate p-value
 - Errors associated with hypothesis testing

	i		
io			
ic			
27			

Summary (continued)

· Statistical decision

- p-value calculates the probability of observing what you observed (or something more extreme) just by chance alone
 - · Guidelines:
 - p > 0.05 If Ho is true, you are likely to observe
 - p < 0.05 If Ho is true, you are unlikely to observe